Article 14114

Title of the article

ELECTRON MOBILITY IN QUANTUM WIRE WITH EDGE DISLOCATION IN EXTERNAL MAGNETIC FIELD

Authors

Krevchik Vladimir Dmitrievich, Doctor of physical and mathematical sciences, professor, dean of the faculty of physics and mathematics, Penza State University (40 Krasnaya street, Penza, Russia), physics@pnzgu.ru
Kalinin Vladimir Nikolaevich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), physics@pnzgu.ru
Kalinin Evgeniy Nikolaevich, Candidate of physical and mathematical sciences, associate professor, sub-department of general physics and physics teaching technique, Penza State University (40 Krasnaya street, Penza, Russia), kalinin_en@mail.ru

Index UDK

539.23; 539.216.1

Abstract

Background. Technology of quantum wire growing may be accompanied by oc-currence of stacking fault and edge dislocations. The latter are very important in scattering of charge carriers at considerably low temperatures, and therefore, signifi-cantly influence transporting properties of quantum wires. In a longitudinal magnetic field there appear new opportunities for charge carriers mobility control in a quantum wire, which is important for applications in semiconductor nanoelectronics. The study aims at theoretical research of the influence of edge dislocation on electron mobility in a quantum wire in an external magnetic field, and also at comparison with influences of other mechanisms of scattering.
Materials and methods. For quantum wires of InSb the authors built curves of dependency of relaxation time on kinetic energy directed to edge dislocation of an electron in a quantum wire in condition of an external magnetic field. For calculation of relaxation time the model of Bonch-Bruevich and Kogan as well as Born ap-proximation were used. Mobility calculation was performed for a quantum wire made of GaAs.
Results. It is shown that for the dependecy of relaxation time on kinetic energy directed to edge dislocation of an electron characteristic are the oscillations, the pe-riod of which in a longitudinal magnetic field decreases, and the value of relaxation time increases due to hybrid quantization. It is revealed that the considered mecha-nism of scattering may be significant in comparison with scattering on LA-phonons and on occasional irregularities of quantum wire boundary, with the temperature in-terval of its effectiveness being determined by the valueof probability of acceptor centers filling in a dislocation line.
Conclusions. Charge state of a dislocation line may significantly influence the range of the temperature interval, at which electron scattering predominates on edge dislocation.

Key words

edge dislocation, relaxation time, external magnetic field, quantum wire, electron mobility.

Download PDF
References

1. Poklonskiy N. A., Kislyakov E. F., Vyrko S. A. Fizika i tekhnika poluprovodnikov [Physics and technology of semiconductors]. 2003, vol. 37, no. 6, р. 735.
2. Ruvinskiy M. A., Ruvinskiy B. M. Fizika i tekhnika poluprovodnikov [Physics and technology of semiconductors]. 2005, vol. 39, no. 2, р. 247.
3. Sinyavskiy E. P., Karapetyan S. A. Fizika i tekhnika poluprovodnikov [Physics and technology of semiconductors]. 2014, vol. 48, no. 2, р. 229.
4. Bert N. A., Gurevich S. A., Gladysheva L. G., Kognovitskiy S. O., Kokhanovskiy S. I., Kochnev I. V., Nesterov S. I., Skopina V. I., Smirnitskiy V. B., Travnikov V. V., Trosh-kov S. I., Usikov A. S. Fizika i tekhnika poluprovodnikov [Physics and technology of semiconductors]. 1994, vol. 28, no. 9, р. 1605.
5. Krevchik V. D., Grunin A. B. Fizika tverdogo tela [Solid state physics]. 2003, vol. 45, no. 7, р. 1272.
6. Bonch-Bruevich V. L., Kogan S. M. Fizika tverdogo tela [Solid state physics]. 1959, Vol. 1, no. 8, р. 1221.
7. Gradshteyn I. S. I., Ryzhik M. Tablitsy integralov, summ, ryadov i proizvedeniy [Tables of integrals, sums, series and products]. M.: Fizmatgiz, 1962.
8. Prudnikov A. P., Brychkov Yu. A., Marichev O. I. Integraly i ryady: v 4 t. [Integrals and series: in 4 volumes]. M.: Fizmatlit, 2003.
9. Ansel'm, A. I. Vvedenie v teoriyu poluprovodnikov [Introduction into the theory of sem-iconductors]. M., 1978. – 616 р.

 

Дата создания: 18.07.2014 13:38
Дата обновления: 23.07.2014 11:20